

PhD, Scientist at RISE, Department of Agriculture and Food

Fish Meal and Oil – a Life Cycle Assessment Perspective

Fish meal and oil – a Life Cycle Assessment perspective

Sara Hornborg, PhD EFFOP Conference June 2nd, Skagen

Today's talk

• Greenhouse gas (GHG) emissions of seafoods and drivers behind

• Insights from Life Cycle Assessment (LCA) of Danish fish meal and oil production

Life Cycle Assessment

- A tool to quantify a broad set of environmental impacts in a systematic manner
- ISO standardized, but each study unique in methodological decisions
 - Functional unit (e.g. per kg, protein, etc), system boundaries, allocation of impacts between co-products, impact assessment method, data representativeness, ...
- Lots of initiatives on "standardized assessments" of product groups
 - E.g., Product Environmental Footprint (PEF), PAS 2050:2011
- Cannot use absolute values from different studies to compare without harmonization

Seafood - GHG emission overview

RI. SE

Seafood - more to consider

Common and unique pressures

Gephart et al. (2021) Environmental performance of blue foods. Nature 597; 360-366

GHG emissions of global capture fisheries trends

Parker et al. (2018) Fuel use and greenhouse gas emissions of world fisheries. Nature climate change 8; 333-337

Feed: composition and amount Norwegian salmon farming

LCA of 1 kg Danish fish meal and oil

- Fish raw material input driver of GHG emissions
 - Pelagic fisheries highly efficient
 - Yield important
- Processing into fish meal and oil the second largest driver
 - Dominated by energy use and source
- Use of trimmings may have a higher contribution to emissions compared to reduction fisheries
 - Depends on species and fishery they originate from, and LCA allocation choices

8

Danish fish meal and oil

Comparison with other common aquaculture feed ingredients

Data for other ingredients: Winther et al. (2020) 'Greenhouse gas emissions of Norwegian seafood products in 2017', SINTEF Ocean, 2020. Available at: https://www.sintef.no/contentassets/25338e561f1a4270a59ce25bcbc926a2/report-carbon-footprint-norwegian-seafood-products-2017_final_040620.pdf/

9

Danish fish meal and oil

IPCC 2013 GWP 100a

Energy source during processing important

10 RISE - Research Institutes of Sweden

Opportunities and challenges for fish meal and oil

Issue	Opportunities	Challenges
Greenhouse ga (GHG) emissio	, ,	• Ability to switch to green energy (TRL, alternative fuels, available infrastructure on land, costs,)
Feed-food conflict	 Use in aquaculture instead of e.g. pigs and pets allows for more resource efficient food systems Utilize all trimmings 	 Public perception of fish meal and oil Would be preferable to use as food for increased availability of nutritious seafood, but is in conflict with raw material availability
	• Baltic Sea : opportunity to use of fish less suitable as food (contaminants, small sizes)	• Baltic Sea : satisfying needs for i) stock recoveries, ii) ecosystem, iii) food production and the iv) fish meal and oil industry

Thank you for your attention!

Sara Hornborg

Sara.Hornborg@ri.se +46 10 516 66 96

Want to know more about our seafood work at RISE?

https://www.ri.se/en/what-we-do/expertises/seafood

RISE - Research Institutes of Sweden AB · info@ri.se · ri.se